287 research outputs found

    Control of tetrahedral coordination and superconductivity in FeSe0.5Te0.5 thin films

    Full text link
    We demonstrate a close relationship between superconductivity and the dimensions of the Fe-Se(Te) tetrahedron in FeSe0.5Te0.5. This is done by exploiting thin film epitaxy, which provides controlled biaxial stress, both compressive and tensile, to distort the tetrahedron. The Se/Te height within the tetrahedron is found to be of crucial importance to superconductivity, in agreement with the theoretical proposal that (pi,pi) spin fluctuations promote superconductivity in Fe superconductors

    Spin resonance in the d-wave superconductor CeCoIn5

    Get PDF
    Neutron scattering is used to probe antiferromagnetic spin fluctuations in the d-wave heavy fermion superconductor CeCoIn5_{5} (Tc_{c}=2.3 K). Superconductivity develops from a state with slow (Γ\hbar\Gamma=0.3 ±\pm 0.15 meV) commensurate (Q0{\bf{Q_0}}=(1/2,1/2,1/2)) antiferromagnetic spin fluctuations and nearly isotropic spin correlations. The characteristic wavevector in CeCoIn5_{5} is the same as CeIn3_{3} but differs from the incommensurate wavevector measured in antiferromagnetically ordered CeRhIn5_{5}. A sharp spin resonance (Γ<0.07\hbar\Gamma<0.07 meV) at ω\hbar \omega = 0.60 ±\pm 0.03 meV develops in the superconducting state removing spectral weight from low-energy transfers. The presence of a resonance peak is indicative of strong coupling between f-electron magnetism and superconductivity and consistent with a d-wave gap order parameter satisfying Δ(q+Q0)=Δ(q)\Delta({\bf q+Q_0})=-\Delta({\bf q}).Comment: (5 pages, 4 figures, to be published in Phys. Rev. Lett.

    Spin-Dynamics of the antiferromagnetic S=1/2-Chain at finite magnetic Fields and intermediate Temperatures

    Full text link
    We present a study of the dynamic structure factor of the antiferromagnetic spin-1/2 Heisenberg chain at finite temperatures and finite magnetic fields. Using Quantum-Monte-Carlo based on the stochastic series expansion and Maximum-Entropy methods we evaluate the longitudinal and the transverse dynamic structure factor from vanishing magnetic fields up to and above the threshold BcB_c for ferromagnetic saturation, as well as for high and for intermediate temperatures. We study the field-induced redistribution of spectral weight contrasting longitudinal versus transverse excitations. At finite fields below saturation incommensurate low-energy modes are found consistent with zero temperature Bethe-Ansatz. The crossover between the field induced ferromagnet above BcB_c and the Luttinger liquid below BcB_c is analyzed in terms of the transverse spin-dynamics. Evaluating sum-rules we assess the quality of the analytic continuation and demonstrate excellent consistency of the Maximum-Entropy results.Comment: 10 pages, 6 figure

    Field-driven phase transitions in a quasi-two-dimensional quantum antiferromagnet

    Full text link
    We report magnetic susceptibility, specific heat, and neutron scattering measurements as a function of applied magnetic field and temperature to characterize the S=1/2S=1/2 quasi-two-dimensional frustrated magnet piperazinium hexachlorodicuprate (PHCC). The experiments reveal four distinct phases. At low temperatures and fields the material forms a quantum paramagnet with a 1 meV singlet triplet gap and a magnon bandwidth of 1.7 meV. The singlet state involves multiple spin pairs some of which have negative ground state bond energies. Increasing the field at low temperatures induces three dimensional long range antiferromagnetic order at 7.5 Tesla through a continuous phase transition that can be described as magnon Bose-Einstein condensation. The phase transition to a fully polarized ferromagnetic state occurs at 37 Tesla. The ordered antiferromagnetic phase is surrounded by a renormalized classical regime. The crossover to this phase from the quantum paramagnet is marked by a distinct anomaly in the magnetic susceptibility which coincides with closure of the finite temperature singlet-triplet pseudo gap. The phase boundary between the quantum paramagnet and the Bose-Einstein condensate features a finite temperature minimum at T=0.2T=0.2 K, which may be associated with coupling to nuclear spin or lattice degrees of freedom close to quantum criticality.Comment: Submitted to New Journal of Physic

    Strict limit on in-plane ordered magnetic dipole moment in URu2Si2

    Full text link
    Neutron diffraction is used to examine the polarization of weak static antiferromagnetism in high quality single crystalline URu2Si2. As previously documented, elastic Bragg-like diffraction develops for temperature T<T_{HO}= 17.5 K at q=(100) but not at wave vector transfer q=(001). The peak width indicates correlation lengths \xi_c=230(12) \AA \ and \xi_a=240(15) \AA. The integrated intensity of the T-dependent peaks corresponds to a sample averaged c-oriented staggered moment of \mu_{c}=0.022(1) \mu_B at T=1.7 K. The absence of T-dependent diffraction at q=(001) places a limit \mu_{\perp}<0.0011 \mu_B on an f- or d-orbital based in-plane staggered magnetic dipole moment, which is associated with multipolar orders proposed for URu_2Si_2.Comment: 9 pages, 7 figure

    Singlet Magnetism in Heavy Fermions

    Full text link
    We consider singlet magnetism for the uranium ions in UPt3_3 and URu2_2Si2_2 assuming that time-reversal symmetry is broken for the {\em coherent state of intermediate valence}. The relative weight of the two involved configurations should be different for UPt3_3 and URu2_2Si2_2. If in UPt3_3 the configuration 5f15f^1 on the U-ion prevails in the coherent state below the magnetic transition, the magnetic moment would vanish for the particular choice of the {\em ionic} wave function. In case of URu2_2Si2_2, the phase transition is non-magnetic in the first approximation -- the magnetic moment arises from a small admixture of a half-integer spin configuration.Comment: 12 pages, RevTex, no figures; Phys. Rev. Lett., to appea
    corecore